

Sixth Semester B.E. Degree Examination, December 2012 **Digital Communication**

Max. Marks:100 Time: 3 hrs.

> Note: Answer FIVE full questions, selecting at least TWO questions from each part.

 $\frac{\mathbf{PART} - \mathbf{A}}{\mathbf{A} \text{ low pass signal g(t) and its spectrum is given by}}$

$$G(f) = \begin{cases} 1 - \frac{|f|}{200} & |f| < 200 \text{ Hz} \\ 0 & \text{Elsewhere} \end{cases}$$

- Assume that g(t) is ideally sampled at $f_s = 300$ Hz. Sketch the spectrum of the i) sampled signal.
- Repeat part (i) for $f_s = 400 \text{ Hz}$. ii)

(06 Marks)

State and prove sampling theorem for band pass signals.

(10 Marks)

- Highlight the advantages and disadvantages of digital communication over analog (04 Marks) communication.
- Twenty-four voice signals are sampled uniformly and then time-division multiplexed. The 2 sampling operation uses flat-top samples with 1 microseconds duration. The multiplexing operation includes provision for synchronization by adding an extra pulse of sufficient amplitude and also 1 microsecond duration. The highest frequency component of each voice signal is 3.4 kHz.
 - Assuming a sampling rate of 8 kHz, calculate the spacing between successive i) pulse of the multiplexed signal.
 - Repeat your calculation assuming the use of Nyquist rate sampling. ii)
 - Determine the probability of symbols error for binary encoded PCM wave and is given by

$$P_{e} = \frac{1}{2} \operatorname{erfc} \left(\frac{A}{2\sqrt{2} \sigma} \right)$$
 (10 Marks)

Write a note on robust quantization.

(04 Marks)

For the sinusoidal modulating signal $x(t) = A_0 \cos 2\pi f_0 t$. Show that the output signal-to-noise 3 ratio in a delta modulated system under the assumption of no slope overload is given by

$$(SNR)_0 = \frac{3f_s^3}{8\pi^2 f_0^2 f_M}$$

where f_s = sampling frequency and f_M = cut-off frequency of the low pass filter in the (08 Marks) receiver.

- b. Give the binary sequence 011010110, construct the polar octal format of the NRZ type using (06 Marks) i) natural code ii) Gray code
- Explain the inter symbol interference with the help of spectral analysis. How it will be (06 Marks) eliminated?

a. Explain duobinary signalling scheme.

(10 Marks)

A binary wave using polar signalling is generated by representing symbol 1 by a pulse of amplitude +1 volt and symbol 0 by a pulse of amplitude -1 volt; in both cases the pulse duration equals the bit duration. This signal is applied to a low-pass RC filter with transfer function

$$H(f) = \frac{1}{1+j^{f/f_0}}$$

Construct the eye pattern for the filter output for the following sequences:

- i) Alternating 1s and 0s.
- ii) A long sequence of 1s followed by a long sequence of 0s.

(06 Marks)

Highlight the significance of raised cosine technique.

(04 Marks)

 $\frac{\mathbf{PART} - \mathbf{B}}{\mathbf{Explain}}$ Explain the generation and detection of binary phase shift keying. 5

(10 Marks)

Find the average probability of symbol error for a coherent QPSK system.

(10 Marks)

For the signals $s_1(t)$, $s_2(t)$, $s_3(t)$ and $s_4(t)$ shown in the Fig.Q6(a), find the orthonormal basis 6 functions using Gram-Schmidt orthogonalisation procedure. (10 Marks)

Fig.Q6(a)

b. In an FSK system the following data are observed;

Transmitted binary data rate = 2.5×10^6 bits/sec

PSd of zero mean AWGN = 10^{-20} Watts/Hz.

Amplitude of received signal in the absence of noise = $1 \mu Volt$.

Find the probability of error assuming coherent detection. Given erfc($\sqrt{5}$) = 1.7. (05 Marks)

Explain correlative receiver.

(05 Marks)

a. State and prove properties of matched filter receiver.

(10 Marks)

Explain adaptive equalizer with respect to a suitable block diagram.

(10 Marks)

- 8 Explain the properties of maximum length sequence generated from 3 stage shift register with linear feedback. Verify these properties and determine the period of the given PN sequence 01011100101110. (08 Marks)
 - Explain with a block diagram the model of direct sequence spread binary PSK system.

(08 Marks)

Highlight the applications of spread spectrum techniques.

(04 Marks)